Online PlanningΒΆ
Run online planning in collision aware environments.
All examples can be run by first cloning the PyRoki repository, which includes the pyroki_snippets
implementation details.
1import time
2import viser
3import numpy as np
4from robot_descriptions.loaders.yourdfpy import load_robot_description
5
6import pyroki as pk
7from pyroki.collision import HalfSpace, RobotCollision, Sphere
8from viser.extras import ViserUrdf
9import pyroki_snippets as pks
10
11
12def main():
13 """Main function for online planning with collision."""
14 urdf = load_robot_description("panda_description")
15 target_link_name = "panda_hand"
16 robot = pk.Robot.from_urdf(urdf)
17
18 robot_coll = RobotCollision.from_urdf(urdf)
19 plane_coll = HalfSpace.from_point_and_normal(
20 np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 1.0])
21 )
22 sphere_coll = Sphere.from_center_and_radius(
23 np.array([0.0, 0.0, 0.0]), np.array([0.05])
24 )
25
26 # Define the online planning parameters.
27 len_traj, dt = 5, 0.1
28
29 # Set up visualizer.
30 server = viser.ViserServer()
31 server.scene.add_grid("/ground", width=2, height=2, cell_size=0.1)
32 urdf_vis = ViserUrdf(server, urdf, root_node_name="/robot")
33
34 # Create interactive controller for IK target.
35 ik_target_handle = server.scene.add_transform_controls(
36 "/ik_target", scale=0.2, position=(0.3, 0.0, 0.5), wxyz=(0, 0, 1, 0)
37 )
38
39 # Create interactive controller and mesh for the sphere obstacle.
40 sphere_handle = server.scene.add_transform_controls(
41 "/obstacle", scale=0.2, position=(0.4, 0.3, 0.4)
42 )
43 server.scene.add_mesh_trimesh("/obstacle/mesh", mesh=sphere_coll.to_trimesh())
44 target_frame_handle = server.scene.add_batched_axes(
45 "target_frame",
46 axes_length=0.05,
47 axes_radius=0.005,
48 batched_positions=np.zeros((25, 3)),
49 batched_wxyzs=np.array([[1.0, 0.0, 0.0, 0.0]] * 25),
50 )
51
52 timing_handle = server.gui.add_number("Elapsed (ms)", 0.001, disabled=True)
53
54 sol_pos, sol_wxyz = None, None
55 sol_traj = np.array(
56 robot.joint_var_cls.default_factory()[None].repeat(len_traj, axis=0)
57 )
58 while True:
59 start_time = time.time()
60
61 sphere_coll_world_current = sphere_coll.transform_from_pos_wxyz(
62 position=np.array(sphere_handle.position),
63 wxyz=np.array(sphere_handle.wxyz),
64 )
65
66 world_coll_list = [plane_coll, sphere_coll_world_current]
67 sol_traj, sol_pos, sol_wxyz = pks.solve_online_planning(
68 robot=robot,
69 robot_coll=robot_coll,
70 world_coll=world_coll_list,
71 target_link_name=target_link_name,
72 target_position=np.array(ik_target_handle.position),
73 target_wxyz=np.array(ik_target_handle.wxyz),
74 timesteps=len_traj,
75 dt=dt,
76 start_cfg=sol_traj[0],
77 prev_sols=sol_traj,
78 )
79
80 # Update timing handle.
81 timing_handle.value = (
82 0.99 * timing_handle.value + 0.01 * (time.time() - start_time) * 1000
83 )
84
85 # Update visualizer.
86 urdf_vis.update_cfg(
87 sol_traj[0]
88 ) # The first step of the online trajectory solution.
89
90 # Update the planned trajectory visualization.
91 if hasattr(target_frame_handle, "batched_positions"):
92 target_frame_handle.batched_positions = np.array(sol_pos) # type: ignore[attr-defined]
93 target_frame_handle.batched_wxyzs = np.array(sol_wxyz) # type: ignore[attr-defined]
94 else:
95 # This is an older version of Viser.
96 target_frame_handle.positions_batched = np.array(sol_pos) # type: ignore[attr-defined]
97 target_frame_handle.wxyzs_batched = np.array(sol_wxyz) # type: ignore[attr-defined]
98
99
100if __name__ == "__main__":
101 main()